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Rigorous Hybrid-Mode Analysis of the
Transition from Rectangular

Waveguide to Shielded
Dielectric Image Guide

JURGEN STRUBE AND FRITZ ARNDT, SENIOR MEMBER, IEEE

Abstract —The transition waveguide to shielded and dielectric image
guide is analyzed by the rigorous hybrid-mode field expansion technique
where higher order mode coupling effects are taken into account directly,
also below the corresponding cutoff frequency. The solution of the related
eigenvalue problem includes waves with a complex propagation constant
although the guide is assumed to be lossless. Calculated diagrams of the
propagation constant as a function of frequency, as well as of the permittiv-
ity, illustrate the complicated mode conversion between evanescent modes,
complex waves, backward waves, and propagating waves. For the three-
dimensional scattering problem, the calculated magnitude of the input
reflection coefficient agrees well with measurements, whereas the transmis-
sion-line theory applied to this structure leads to wrong results.

I. INTRODUCTION

IELECTRIC IMAGE GUIDES are finding increas-
ing application for millimeter-wave integrated-circuit
designs [1]-[14]. Since rectangular waveguide instrumenta-
tion is commonly used in this wavelength range, exact
knowledge of the features of the tramsition to dielectric
image guide (Fig. 1), e.g., by means of accurate field-theory
methods, is of great importance. This is emphasized by the
fact that simple transmission-line theories (cf., e.g., [14])
applied to this discontinuity lead to wrong results. Also,
the discussion of the frequency-dependent behavior of this
transition may be helpful for further investigations at
related discontinuities, like mode launchers [6]-[8], filter
structures [10], [12]-[14], or transformer sections [11]. In
contrast to the planar dielectric waveguide [19], the step
discontinuity shown in Fig. 1 requires all six field compo-
nents to be considered [23], i.e., in the interpretation of [20]
and [12], TE-to-TM (or TM-to-TE) mode coupling has to
be taken into account. v
Cross-section field and phase constant calculations for
this structure have been the subject of many papers, €.g.,
[1]-[14], including full-wave field expansion analysis
[15]-[18]. These investigations, however, are mostly re-
stricted to the dielectric image-guide mode range, where
the phase constant B8, normalized to the free-space wave-
number k, is greater than one, and the modes are purely
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(b)
Fig. 1. Shiclded dielectric image guide. (a) Transition from rectangular
waveguide to shielded dielectric image guide. (b) Cross section.

bound to the image guide. Since mode conversion effects
[20], [12] occur largely for the range where the modes are
not yet purely bound, investigations for normalized propa-
gation constants less than one, as well as for modes below
cutoff, may be very informative.

This paper presents a rigorous hybrid-mode six-field-
component analysis of the three-dimensional step discon-
tinuity of Fig. 1. The theory based on expansion of the
fields in suitable orthogonal eigenmodes includes the higher
order hybrid-mode coupling effects directly. Field match-
ing at the step investigated and normalization to the power
carried leads immediately to the interesting scattering coef-
ficients involved. The investigation of the related eigen-
value problem includes backward waves [16] and complex
waves [21]-[25]. Since complex wave effects may also be
explained as leakage due to mode conversion between
constituent waves [20], [12], a profound discussion of the
hybrid-mode dispersion behavior, which will include
frequency ranges below the cutoff frequency and curves as
a function of the permittivity, may help to give further
insight to such phenomena. Measurements of the reflection
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coefficient at the step discontinuity of Fig. 1 verify the
theory for the three-dimensional problem.

II. THEORY

For each subregion s=1,2,3,4,5 (Fig. 1), the complete
hybrid-mode field is derived from the Hertzian vectors P
and Q, respectively, [26]

E®=yxXv XPO— jopy X 0O

A = joey x POy x 7 X 0O, (1)
In (1), TE~TM mode coupling is inherently included. P
and Q are assumed to be sums of suitable eigenmodes
satisfying the vector Helmholtz equation and the corre-
sponding boundary conditions

. psi

P = Z h&f).@(f)(x’y).gm
V=1
psi

0= Y hD-®®(x, y)-&®. (2)
V=1

For simplicity, in (2), the fields are written at z =0 only;
the z-dependence in forward and backward direction is
understood. 4§’ and £§ are the still-unknown complex
amplitude coefficients of the ¥th mode. The type of modes
used for expansion purposes is stated at the end of this
section. The expressions for the eigenmodes ®§” and ®
and the relations of the propagation constants in the
z-direction v}y are given in the Appendix. Note that for
the calculations, the vectors P and é in (1) are assumed to
be y-directed in the subregions s =1,- - -,4, and z-directed
in the subregion s =35 (cf. the corresponding unit vector
&%) in (A1)—(AS) in the Appendix).

The cross-section eigenvalue problem is treated as in
[17], with the exception that an electric wall is considered
at x = a (Fig. 1(b)) instead of the one-sided lateral open
structure in {17]. Field matching at the boundaries in the
x, y-direction leads to the set of equations for the field
amplitudes in (A1)-(A4), which may be written in matrix
form
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and

Ep kysin( BD-(—w—a))

Fy-kg-cos(BY-(—w—a))
A, kg kS sin( B2w)
A, ko kS4-cos( B2-w)
B,L-ko-ka-cos(B)ﬁ)-w)
Bl ky kP -sin( D)

Gpko { 23%}( 0 (w — b))

cos
Hyeko{ g J (B (w =)
The matrix elements of (M) are given in the Appendix.

The propagation constant vy, is calculated by numerical
solution of the matrix eigenvalue problem det(M)=0;

(V)=

-complex solutions and imaginary values |y,| < wypqe, are

included. The complex solutions of vy, of det(M)=0 are
advantageously searched with the evolution strategy method
[30]. The start value for this direct search process is v, =
JB./ko = Je,, the search range is jB, /k, = jye,, -+, jO for
the imaginary values, and a,/k,=0,---,7 for the real
values. The relative field amplitudes of the modes are given
by the eigenvectors of (3).

By matching the tangential field components at the
corresponding interfaces at the step discontinuity at z=0
(Fig. 1(a)), the related coefficients h, hy of the incident
and reflected waves in (2) can be determined by using the
orthogonality property of the corresponding eigenmodes.
After suitable normalization to the related power leads to
the scattering matrix of the step discontinuity at z = 0 (Fig.

1(a))
)=l

where (S) is given by
N, 0
N (W)
0 Ny 0

(4)

0\ !
(5)

N, H
(8)= N

Ny
with the normalization coefficients N and the matrix (W)
of the wave-amplitude coefficients elucidated in the Ap-
pendix.

(M )-(¥)=0 (3) The convergence behavior of the cross-section eigenvalue
problem may be illustrated by plotting the relative field
with amplitudes against the x, y coordinates. Fig. 2(a) shows as
[ + HZME,, + HZMF,, - HZMRC,, - HZMRS,, — HZMSCS,, -+ HZMSSS,, 0 0
— EZME,, +EZMF,, - EZMPS,, +EZMPC,, +EZMQSS,, +EZMQCS,, 0 0
0 + HYMF,, 0 0 - HYMQCS,, +HYMQSS,, 0 0
(M)=| + EYME,, 0 + EYMTS,, — EYMTC,, 0 0 0 0
0 0 — HZMRC,, + HZMRS,, - HZMSCS,, - HZMSSS,, +HZMG,, +HZMH,,
0 0 + EZMPS,, + EZMPC,, — EZMQSS,, +EZMQCS,, —EZMG,, +EZMH,,
0 0 0 0 — HYMQCS,, — HYMQSS,, 0 + HYMH,,
0 0 — EYMTS,, — EYMTC,, 0 0 + EYMG,, 0o |
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Fig. 2. Illustration of the convergence behavior. (a) Relative field

strength E, /E, ., of the EH;; mode along the cross section at

y=01d (cf. Fig. 1(b)); €,=4, h=3.25 mm, w=3.505 mm, d="7.9
mm, b=7.9 mm, g=— b Number of modes considered Ny =7, cf.
(A1)—(A4). (b) Amplitude of the scattering coefficient S, in decibels as
a function of the number ¥ of modes considered, cf. (2); ¢, =6,
£ =17.5 GHz. Dimensions: cf. Fig. 2(a). Mode types considered: 1, 4, 6,
8, 12, 14, and 15 (order of increasing phase-constant values at a fixed
frequency). (¢) Amplitude of the scattering coefficient Sy; in decibels as
a function of the number ¥ of modes considered; €, =9, f =16.5 GHz,
h=32mm, w=345 mm, d=7.9 mm, a =— b. Mode types consid-
ered: cf. Fig. 2(b).

an example the y-component of the electric field of the
fundamental mode versus x. Also, by further investiga-
tions, we found that with only 11 consecutive modes con-
sidered in (2) (cf. Appendix, (A1)—(A4)), no severe discon-
tinuities in the tangential field component along the cross
section occur. For the three-dimensional scattering prob-
lem, it has turned out to be numerically advantageous to
take only those modes in (2) which are excited at the
structure under consideration into account. For this pur-
pose, the program checks up the mode-coupling integrals
with regard to the exciting H,, mode. Zero coupling means
that the corresponding mode is not excited; this mode is
then omitted from the matching process. In Fig. 2(b) and
(c), the convergence behavior of the fundamental H,,
waveguide mode scattering coefficient S); against the num-
ber ¥ of consecutive excited dielectric image-guide modes
considered in (2) is shown if an H,, wave is incident.
Already, for ¥ = 7 modes, good convergence may be stated.
The dielectric image-guide modes considered for this case
are the 1st, 4th, 6th, 8th, 12th, 14th, and 15th modes (order
of increasing phase-constant values at a fixed frequency);
the related waveguide modes considered are Hy,, Hy;, Hy,
Hy,, Hy, Eyy, and Eyy.

IIL.

Fig. 3 shows dispersion curves calculated with this
method in comparison with results of [16], [17], and [27]. In
order to emphasize the hybrid character of the dielectric
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Fig. 3. Calculated dispersion curves in comparison with available results
of [16], [17], and [26]. (a) Phase constant B, of the EH,; mode versus
frequency of a shielded diclectric image guide, with h=4.0 mm,
d=60 mm, b=5.08 mm, a=—b (+measured resuits of [16]). (b)
Phase constant 8, of the first three modes normalized to ko = wy/po€g
(free-space wavenumber) versus normalized frequency B =
(4h‘/e,—1)/ Ao [17] of a “quasi-open” dielectric image guide with
h=14.1 mm, w = 0.99k, approximated by b =10w, a= —10w, d = 4.8k
(+ calculated results of [17] and [26] for the lateral open structure). (c)
Normalized phase constant B, /k, of the first three even modes versus
normalized frequency B of a coupled “quasi-open” dielectric image
guide with h=4.1 mm, w=13%, b=15lw approximated by a=
755w, and d =4.8h (electric wall at x = b, Fig. 1(a)) (+calculated
results of [26] of the lateral open structure).

image-guide modes for normalized phase constants B, /k,
>1 (ko= w/pqeo ), the designation of [17] is preferred and
used throughout the paper: EH,,,, if the fields associated
with the E mode (E,, E,, and H,) are dominant over E,,
H,, and H,; for HE,,,, the reverse is true. The indices mn
denote the number of maxima of the E -components in the
dielectric region (3) (cf. Fig. 1(b)) in the x- and y-direction,
respectively. The results calculated with seven consecutive
modes in (2) of the shielded (Fig. 3(a)) as well as of the
“quasi-open” single image guide (Fig. 3(b), approximated
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Fig. 4. Propagation constant y, = {j‘fz} normalized with the free-space
Z

wavenumber kg = wy/fLo€q versus frequency of dielectric image line
shielded with a conventional rectangular Ku-band waveguide housing:
7.899 mm x15.799 mm. (a) Low permittivity €, = 2.53; 4 =3.15 mm,
w=3.505 mm, d=79 mm, a=—b=—7.899 mm. (b) Moderately
high permittivity €, =6, & =3.25 mm, m=3.505 mm, d=7.9 mm,
a=—b=~7.899 mm. ---- complex waves, propagating with exp(v,,,,
"z), where ;chz =ta,t lecw'

by b=10w, a= —10w, d =4.8h [27]) and coupled image
guide (Fig. 3(c), approximated by a= —7.55w, d=4.8h
[27], electric wall at x =b=1.51w) agree well with the
related values of [16], [17], and [27], respectively. Slight
deviations in Fig. 3(b) and (c) may be stated near to the
cutoff frequency of the fundamental EH,; mode of the two
“quasi-open” structures (Fig. 3(b) and (c)) because of the
influence of the shield, whereas the real lateral open struc-
ture exhibits no low-frequency cutoff. Thus, the compari-
son with a truly open structure is possi - only indirectly.
Since the hybrid-mode theory results - . 17] are already
compared in detail with results of othe. - mmon theories,
this comparison is omitted in Fig. 3.

Fig. 4(a) shows the normalized propagation constant
Y,/ ko= JjB,/ky (or a,/kg, below cutoff) of a dielectric
image guide (e, =2.53), shielded with a conventional
rectangular Ku-band waveguide housing.! Included is the
nonpropagating mode range v, /k, = a, /k, below the cor-
responding cutoff frequencies f,,, f, of the next higher
order modes, HE,, and HE;,, respectively. For simplicity,

115.799 mm x 7.899 mm (12.4-18 GHz).
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the corresponding real «, values are plotted in the same
diagram, like e.g., in [29], but, for lucidity, in the opposite
direction. For low permittivity (e, = 2.53, Fig. 4(a)), stan-
dard dispersion behavior can be stated and the unique
fundamental EH,;-mode propagation extends nearly the
whole Ku-band frequency range. Already, for moderately
high permittivity (€, = 6, Fig. 4(b)), however, between 13.9
and 16.3 GHz, the eigenvalue solution of Section II leads
to a complex propagation constant v,,, = + a ., + jB.,, in
spite of the assumption that the shielded dielectric image
guide is lossless. This apparent contradiction may be re-
solved by interpretation of calculated lines of real power
flow [25], [24], supported by a “complex” mode [21] or
wave [22], which indicate power transmission with opposite
signs: in the forward direction inside the dielectric region,
in the backward direction outside, or vice versa. The affin-
ity to the leakage effects stated by [20] and [12] is obvious.
The total power transmitted by a complex wave through
the total cross section of the shielded dielectric image guide
is zero, although a real power flow exists. Moreover, for
complex waves, the orthogonality relation still holds [25].

In Fig. 4(b), below the cutoff frequency, the higher order
EH,, mode degenerates to a pair of complex waves propa-
gating in the + z-direction with jg8,,, and the attenuation
constant is «,,. For still lower frequencies, the complex
waves split into two evanescent modes. The corresponding
rectangular waveguide mode propagation constants calcu-
lated for the ordinate (in Fig. 4(b) at 12 GHz) may suggest
a certain affinity to the pure waveguide H,, and E,
modes. The actual mode conversion, however, is more
complicated.

Fig. 5, where the normalized propagation constant
Y./ ko= {JB,/ky a,/ky) is plotted against the permittiv-
ity €,, allows the modes to be assigned directly to rectangu-
lar waveguide modes (¢, =1) at finite frequencies (f =5
GHz, Fig. 5(a); f =14 GHz, Fig. 5(b)); nevertheless, the
plots against €, may be considered as (slightly distorted)
dispersion curves, since increasing permittivity corresponds
to a nonlinear frequency scale. Moreover, all typical results
are verified by a real frequency scale (cf,, e.g., Fig. 7).

The results of Fig. 5(a) may be summarized as follows. 1)
Three complex waves cover nearly the whole indicated
permittivity range. 2) The fundamental EH,; mode already
degenerates to a pair of complex waves (complex wave 2).
3) Evanescent modes may convert to complex waves, which
may lead to propagating modes (complex wave 2). 4)
Evanescent modes may convert to complex waves, which
may lead to backward waves (complex wave 2). 5) Evanes-
cent modes may convert to complex waves, which may lead
to evanescent modes (complex wave 3). 6) Waveguide
modes may convert directly to complex waves (complex
wave 1). 7) There are backward evanescent modes (between
the complex waves 1 and 2). 8) There are new types of
evanescent modes designated as HE,,_; and HE,, o
modes; the HE,, , mode yields a field concentration
within the dielectric region (cf. Fig. 6(a)) and leads directly
to the propagating HE,, mode—the contrary is true for
the HE,, , mode (cf. Fig. 6(b)), which remains an
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Fig. 5. Propagation constant vy, = { sz} normalized with the free-space

wavenumber kg = wy/1o€, plotted against permittivity €, of a dielectric
image line shielded with a conventional Ku-band waveguide housing:
7.899 mm X15.799 mm. (a) Frequency f=5 GHz (a=—b=—"7.899
mm, w=3.45 mm, h=32 mm, d=7.9 mm). ---- complex wave. (b)
Frequency f =14 GHz (same dimensions as Fig. 5(a)). ---- complex
wave, (1) complex wave 1, (2) complex wave 2, (3) complex wave 3, (4)
backward wave. \

(b) ,
Fig. 6. Field of evanescent modes at €, =35, f=35 GHz, indicated in
Fig. 5(a). (a) Hyy_q mode leading to the HE,; propagating mode. (b)
Hyy .1 temaining evanescent mode ( E,, H, not shown).
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Fig. 7. Propagation constant y, = { jf z} normalized with the free-space

wavenumber ko, = wy/poey versus frequency; dielectric image line
shielded with a conventional Ku-band waveguide housing: 7.899 mm X
15799 mm. (a) €,=9; h=32 mm, w=345 mm, d="7.899 mm,
b=17.899 mm, a=—b. ---- complex wave, bw: backward wave. (b) -
€, =15, dimensions: cf. Fig. 7(a). ---- complex wave, bw: backward
wave. (¢) €, =20. (d) ¢, =37.
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evanescent mode. 9) The H,, waveguide mode enlarged by
a E_-component (HE;, mode) splits in complex waves
(complex wave 2, which converts to the fundamental EH,;
mode) and in a backward evanescent mode. 10) The funda-
mental EH;; mode (which may be considered to be con-
stituted by the fundamental H,, waveguide mode via the
complex wave 2) is combined with the higher order HE;,
mode (showing even symmetry like the EH;; mode) via a
backward wave; this may visualize the close affinity be-
tween these modes. Additionally, it should be noted that
complex waves exist in the evanescent mode range of the
corresponding propagating waves; the cutoff frequencies of
propagating higher order modes are no reliable criterion
for the absence of leakage affects [12], which may be
caused by complex waves, especially since the fundamental
EH,, mode may already degenecrate to complex waves
below its cutoff frequency.

In Fig. 5(b), where the fundamental EH,; mode is above
its cutoff frequency, analogous results to Fig. 5(a) may be
perceived. The complex wave 3) and the backward wave 4)
may be considered as original parts of the higher order
mode pair HE,, and EH,,. Fig. 6(a) and (b) shows the
evanescent H,,_,, and H,, , mode fields (at €, =5, Fig.
5(a)) already mentioned above (statement 8)).

Fig. 7 exhibits the dispersion curves—propagation con-
stant y, normalized with the free-space wavenumber &, =

wyly€e, as a function of frequency—for the dielectric
image line shielded with a Ku-band waveguide housing for
several permittivity values (e, as a parameter). The analogy
to the corresponding curves (Fig. 5) as a function of
permittivity at fixed frequencies is obvious and the related
statements still hold. Fig. 7(a), for instance, indicates again
that complex waves may occur below the cutoff frequency
of the corresponding propagating modes to which they are
constituent parts.

Fig. 8 shows the magnitude of the scattering coefficients
S,; at the step-discontinuity rectangular waveguide to the
shielded dielectric image guide (Fig. 1(a)) if a H,, (TE,)
wave is incident. The magnitude of S,,, which is relatively
easy to measure—opposite to the phase angle, especially
for all cases of simultancous higher order mode propa-
gation—has turned out to be an adequate criterion to
verify the theory. The hybrid-mode analysis results (solid
line) are compared with measurements and with results of
transmission-line theory (cf., e.g., [14]) applied to this
structure. Only for €, = 2.53 (Fig. 8(a)) does the transmis-
sion-line theory lead to satisfactory agreement with the
hybrid-mode analysis. This may be illustrated by Fig. 4(a),
where for nearly the whole Ku-band (12.4-18 GHz) only
the fundamental £H;; mode propagates. For higher per-
mittivity, €, =6 (Fig. 8(a)), ¢, =9 (Fig. 8(b)), and €, =20
(Fig. 8(c)); however, these examples indicate that the hy-
brid-mode analysis results (calculated by only seven con-
secutive modes selected by the criterion of excitation by the
incident H,, mode; cf. Fig. 2(b) and (c)) agree well with
measurements, whereas the transmission-line theory leads
to wrong results.
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Fig. 8. Magnitude of the scattering coefficient S;, at the step discon-
tinuity rectangular waveguide to shielded dielectric image guide if a H,
(TE,) wave is incident. —— calculated with the hybrid-mode analysis.
----- calculated by transmission-line theory (cf, e.g., [14]). + + + + +
measured. (a) €, =253, =315 mm, and €, =6, A =325 mm, w=
3.505 mm, d =7.899 mm, b=7.899 mm, a=—b. (For ¢, = 2.53, the
transmission-line theory results are nearly identical with those of the
hybrid-mode analysis and are, therefore, omitted.) (b) €, =9, h=3.2
mm, w=3.45 mm, d=7.899 mm, b= 7899 mm, a=—b. (c) €, =20,
h=32mm, w=345 mm, d=7.899 mm, b= 7.899 mm, a = — b.

IV. CoNcLusION

A rigorous hybrid-mode analysis of the transition from
rectangular waveguide to shielded dielectric image guide is
described. Based on expansion of the fields in suitable
orthogonal eigenmodes, the theory takes into account higher
order hybrid-mode coupling effects directly, also below the
corresponding cutoff frequency. The investigation of the
related eigenvalue problem, in addition to backward waves,
includes frequency ranges where the propagation constant
is complex in spite of the assumption that the guide be
lossless. These complex waves exhibit power transmission
with opposite signs: in the forward direction inside the
dielectric region, in the backward direction outside, or vice
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versa. The affinity to leakage effects, stated recently, is
obvious. Calculated diagrams of the propagation constant
as a function of frequency, as well as of the permittivity,
indicate that complex waves occur nearly over the whole
investigated range. Some important results may be sum-
marized as follows: the fundamental mode already degen-
erates to a pair of complex waves; evanescent modes may
convert to complex waves, which may lead to propagating
modes, backward waves, or again to evanescent modes;
waveguide modes may convert directly to complex waves;
there are backward evanescent modes and evanescent
modes which may be considered to be sums or differences
of degenerated waveguide modes; complex waves exist in
the evanescent mode range of the corresponding propagat-

ing waves; therefore, the cutoff frequencies are no reliable -

criterion for the absence of leakage effects caused by
complex waves, especially since the fundamental mode
may already degenerate to complex waves. For the three-
dimensional scattering problem of the transition waveguide
to shielded image guide, the magnitude of the input reflec-
tion coefficient calculated with only seven consecutive ex-
ited modes agrees well with measurements, whereas the
transmission-line theory applied to this structure leads to
wrong results.

APPENDIX

A. Eigenmode Expressions for (2)

s=1:
, Ny

dP(x, y)= Y. E,sin(BP(x—a))cosp Dy

v=1
My

&P (x,y)= Y Feos(B (4)(x—a))s1n,8(4)
p=1

M. 50 —
el=¢e,; hy' =

s=2:

hY=hgH=hg Y (A1)

Ny
oP(x,y)= X (A Sln,3(2)x+A’coSB(2)x)
v=1

cospP(y—d)
My

®P(x,y)= Y. (B,cosBPx + B sin fPx)
p=1

sin(BO(y - )
WY = GO =R
(42)

éP=e; hQP=hP=hY=

s=3:
Ny
@9 (x,y) = L, (G sinfOx +C/cos BOx) cos By
v=1
My
&9 (x,7) = L (D,cosBP + D;sin fPx) sin By
p=1
hQ=hP=h$D=h¢P=hQP=h

(A3)

eN=¢,;

397

s =4:
Ny
o (x,y)= X G,sin B (x—b)cos By
v=1
My
OP(x,y)= Y, H,Lcos( <4)(x—b))sm,8(4)
p=1
ev=¢,; WP =hP=hnG P=h"3 (Ad)
s=5:
o (x, y) =sin( (b"i”a) -(x—a))sin %Ty
O (x, y) = COS((bmW )(x a))cos dwy
eV=¢,¥Y=m,n. (A5)

(By this choice, a unique assignment to the waveguide E
and H modes is possible.)

B. Relations for the Propagation Constants
vom

'3(4)__ v=01,2, -
BO=ET,  w=123, (A6)

ki=—vy2+BY2+ ﬁ(4)2 = '3(4)2 + 3(4)2
kg ==y +BD+ B =~ +,3(2)2+B‘2)2
k2 e® = —y24 RO 4 O = —y2 4 BOR 4 pOV

(A7)
BS)-sin(BDh) cos( B D (h—d))-ePBD cos (Bh)
-sm( BP(h—d))=0 (AS8)
(3)
cos(BD(h—d))sin(BOK) - ,8(2) -cos( B2)
sin(B2(h—d)) =0. (A9)

C. Matrix Elements of (3)

Bi-cos (B (= w=a))
kg-sin( BD-(—w—a))

HZME, = we 2 N,

k'” - .]Yz
HZMF, =~ . 1k
KT Tk,
,3(2) Rkv'cos( (2)( W))
HZMRC, A6 = we
kO ey kCA-sin ( BD- (+ w))
BP-R,, sin (B3 (£ w))
+ HZMRS
e ko-ka'COS(B,S?-(+W))
= Jv:S
HZMSCS,, = ———*
ko k!
- j‘Yz'Sky,

+ HZMSSS,,, = +

A10
s (A10)
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EZME, = kz_'n ) —kJYZ D. Normalization Coefficients of (5)
0 =+ [O
EZMF. = o ‘8(4) 51n(,3(4) ( W — a)) NHmn t hmn ,
o g keg-cos (BG-(—w - a)) + \/wuoﬁz‘i,’n(b a [(b 7) N, +(ndw)Nm]
p —_
+ EZMPS,, = + ch
k, N, = Neumann-factor, (N =2 fork~ 0)
—jY P, N=1 fork+0
EZMPC,, = —-2 "k :
ko kA N, —+h(5)+\/ o (b— a) [(m’ﬂ)z (”'77)2]
Emn ™ T "mn WL mn + .
B2-0,,sn (B-(1w) ¢ el T
+ EZMQSS,, = wpy ~ ’LkD;C (B:;) o )) (A16)
-k.”-cos (+w
~?2) # _’“‘2 ) For the dielectric waveguide, the power is calculated
EZMQCS,,, = wp,: Bxp, 'Qky'cos(ﬁ;fu‘(“ W)) numerically
k 0 . P X = = - —
’ ko k,2®-sin ( B2-(+ W))( | p=["0p Od(EXH*)-é'Zdydx. (A17)
All x=a’y=
J [ B @ ] The normalization coefficient is then given by
HYMFk=§'T Ny=+hg/P. (A18)
[ ,8(2)2— y ] 0 The following abbreviations have been used:
_ z kp . -
HYMQCS,, = ko k27 kCA=L cos[,B(Z)(h—d)] D5 — sm[,By(i)(h—d)]
B) p T3
[ o, ] 0 €l cos[By(f)h] sm['gve)h]
+ HYMQSS,, = + 1By =] Cy A12
055k ko kP® (a12) R, = e@kf"fh cos(B<3) )cos( kd )dy
y=0
d [18(4)2_ Yzz] d ka
EYMEk“E'Nk'T +£=hCOS(B;3)(y—d))cos(7y) dy
[,3(2) *YZZ] Ty, — 1. 0Bp) [* €) ke
+ EYMTS,, =+ B kA S=k, Bwfzocos B )cos( 7y) dy
@?_ 2], 5 k
EYMTC,, = LLCJ—T—" B2 COS(By(?(y ~d ))c05(~d—y) dy
Bok, X
h ~ T
@7 _ Q., = kDB sin( B sin(— )d
EYMG,(=§-N,(['BX,CI;%YZ] (A13) kp " '/):=0 (yuy) dy 34
0
d . [ ka
(. — inl =—
HYMHk_g [,3(4) — z] +/=hsm(,BW (y d))sm( 7 )dy
2 By '
ka
_ = kCBO (M sin(p® (__ )d
EZMG, - 1‘2— Bj Y: (A14) Bow y:osm(ﬁ y)sin 7y ) &
0
o[ sin @ [ sin( g@ in[ X7
BY. { }( BY-(w— b)) + B, sm(,By,, (y—d))sm —y|dy
EZMH, = op,- 2. S - a
kT Whot Y
27, [cos BY-
ko {sin }( (w—12)) T, = k,,C“/ cos(,liy(ﬁ)y)cos(k—d71 ) dy
y=0
B,E‘;? on ) (B (w=1))
HZMG, = we,- 2. <Sm} +fd cos( B2y — d))cos k7 ) ay,
K ) {sm}( @.(w— b)) y=h Y d
cos
HZMH, = %’7 _kj e (A15) E. Matrix (W) of the Waveamplitude Coefficients in (5)
0
(_HYLmn) ( HYP ) (+HY mn‘I/) (_HYLmn) (+HYPmn) ( HYH, mn\I’)
(W)= (- HXL,,) (-HXP,,) (+HXE+HXH),, (- HXL,,) (+HXP,) (+HXE- HXH),,,,,\I,
(- EXL,,) (+EXP ) (+ EXE — EXH),, (+EXL,,) (+EXP,) (—EXE-— EXH),,,,N,

(A19)
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F. Matrix Elements in (A19)
EXL, =

EXP, =;p®.mm 4

HYL, B(S).M.b;a.N

zmn 2 m

HYP

mn = T J W €g”

EXE, = — Eq,- B, =T .CINZ06

N+1

+ Y (Ay, CINZ4T,,, — Ay, CINZA4S,, )
v=1

'BX(?%IZV B\f‘zll)u CINZ40\I/,,,,

N+1
+ Z (A4, CINZ4T,,,,—

¥ mn

4," CINZ48,,, )

. B;%gy ,8(3) kA CINZ49\I,

+ Gy, BY - =T . CINZO1,,, (A21)

, EXHmn‘I’ = w"'LO'F\IIn'(— j‘Yz\I/)' 5 CINZO6‘I’mn

N
+ Y (By, CINZ02y,,, + B},  CINZ03,,,,)

: ( - j‘Yz\I').CINZOS‘P;Ln

N
+ Y (By, CINZ02y,,, + By, CINZ03,,,,)
n=1

'(_ jYz‘P)'k;?B.CINZO4‘P;Ln

+ H‘I’;L(— j‘Yz\I/)'g C“IJVZOl‘Ilmn (A22)

HXEmn‘I’ =w- EO'E‘I'n. ( - jYz‘I') : ; 'Nn' CINZl6\I’mn

N+1

+ Y (Ayg, CINZ17y,,, + A%, CINZ18,,,.)
p=1

: ( - jYz\II) CINZlO‘I’vn

N+1

+ Y (Ay, CINZ17,,,, + A%, CINZ18,,,.)
v=1

-€®.kCA.CINZ19,,,

+ G\pn'(" jyzq,g)Nn-CINleq,mn (A23)

(A20)
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HXH,, ~—F% B, "5 N, CINZIG,,,
+ Z (By, CINZ12y,,, — B}, CINZ13y,,,)
1
/3?@ BR,-CINZ15,,,
+ Z (By, CINZ12,,,,— B}, CINZ13y,,,)
=1
/3;@# B, kDB-CINZMW,,
+ Hyp BG,  -N,-CINZ11,,,,  (A24)
EYE,.=Eq, | B - z\y]-i-Nn-CINZM\I,mn |

N+1
+ 3 (Ay, CINZ17y,,, + A%, CINZ18y,,)
v=1
[B)S%I’)V - YZZ\II] CINZlO‘I’vn
N+1

+ Y (Ay, CINZ17,,,, + A%, CINZ18,,,.)
y=1

[ BRL— 12| -kt CINZ19,,
: d
+ Gy | B — Y2 |- 5N, CINZ1l,,

(A25)
HYH, = Fgy [3;5‘\2:1 - Yzz\[/] : g -CINZ06,,,,
+ 2 (By, CINZ02y,,, + By, CINZ03,,,)
p=1
(B - v |- CINZO03,,
N
+ ¥ (By, CINZO2,,, + B}, CINZ03y,,,)
p=1
| 8% — 2] kP CINzo4W

+ H,, [BY - yﬂ,] -CINZ0ly,,,. (A26)

G. The Coupling Integrals in (A21)-(A26) Solved
Analytically
CINZOl,,,, = f” cos( B, (x — b))

-cos( bniwa (x— a))-dx

CINZ02g,,, = /  cos ;Qn )-cos( bniwa (x— a))~dx
CINZ03y,,, = f sin ;%IZ,L )-cos( bm—qra (x— a)) -dx
X=—Ww
CINZ04y,, = f sin(BY-)-sin( 27y}
y=

CINZ0Sy,,= [* sin(BD, (y—d))- Sm(7 ) Y

E :-

I
CINZ06,,, = f cos(BY, (x —a))
X

L

~(x- a)) dx. (A27)
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d

Q) .
cos Py

CINZ10,,, = f
y=h

(y-— d)) cos(d )dy

w

CINZ11,,, = f sin (B, (x—b))

p, (x~- a))-dx

in( me
S Py

2
sin ,85\1,#

)-sin( bniwa (x— a))-dx

bm_ﬂa (x— a))-dx

CINZ12g,,, =

CINZl3\I,,Lm=f cos ,8‘“) )-sin(

h nmw
CINZl4\P,m=/ Ocos( By )- cos(—:{—y)-dy
-

d
CINZlS\I,M=f cos(BR, (y—d))- cos(7 )dy

v=h

CINZ16,,, = f sin( B9, (x —a))

. [ m7
-s1n(b_a(x a)) dx
+ w
f sm( 3, x )-sin(
f+w cos( B3, )-sin( mT (x—a))-dx
o ¥y X b—a

h
CINZ19y,,= [ cos(BR,y )-cos( " y) .
¥

Il

CINZ1,,., T (x- a))-dx

CINZ18,,,

(A28)

I

CINZ40,,, = f ¢ sm( 2,

y=h

(y—d))'sin(%y)-dy

)~cos( bm_wa (x— a))-dx

)-cos|

CINZ4Tg = [ cos(BG,

X =—w

tw
CINZ48,,,, = / - sm( 2 -x bW_l_Wa (x— a))-dx

CINZ49,,, — f sin(8%),-
y=

)-sin(ﬂdzy)-dy. (A29)
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