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Rigorous Hybrid-Mode Analysis of the
Transition from Rectangular

Waveguide to Shielded
Dielectric Image Guide

JURGEN STRUBE AND FRITZ ARNDT, SENIOR MEMBER, IEEE

Abstract —The transition wavegnide to shielded and dielectric image

guide is anafyzed by the rigorous hybrid-mode field expansion technique

where higher order mode coupfirsg effects are taken into account directly,

also below the correspusding cntoff frequency. The solution of the related

eigenvaiue problem includes waves with a complex propagation constant

afthough the guide is assumed to be lossless. Cafcnfated diagrams of the

propagation constant as a function of frequency, as well as of the permittiv-

ity> Illustrate the complicated mode conversion between evanescent modes,
complex waves, backward waves, and propagating waves. For the three-

dimensiorsaf scattering problem, the calculated magnitude of the input

reflection coefficient agrees well with measurements, whereas the transmis-

sion-line theory applied to this structure leads to wrong resnfts.

I. INTRODUCTION

D IELECTRIC IMAGE GUIDES are finding increas-

ing application for millimeter-wave integrated-circuit

designs [1]–[14]. Since rectangular waveguide instrumenta-

tion is commonly used in this wavelength range, exact

knowledge of the features of the transition to dielectric

image guide (Fig. 1), e.g., by means of aeeurate field-theory

methods, is of great importance. This is emphasized by the

fact that simple transmission-line theories (cf., e.g., [14])

applied to this discontinuity lead to wrong results. Also,

the discussion of the frequency-dependent behavior of this

transition may be helpful for further investigations at

related discontinuities, like mode launchers [6]–[8], filter

structures [10], [12]–[14], or transformer sections [11]. In

contrast to the planar dielectric waveguide [19], the step

discontinuity shown in Fig. 1 requires all six field ,compo-

nents to be considered [23], i.e., in the interpretation of [20]

and [12], TE-to-TM (or TM-to-TE) mode coupling has to

be taken into account.

Cross-section field and phase constant calculations for

this structure have been the subject of many papers, e.g.,

[1]-[14], including full-wave field expansion analysis

[15] -[18]. These investigations, however, are mostly re-

stricted to the dielectric image-guide mode range, where

the phase constant ~, normalized to the free-space wave-

number ICOis greater than one, and the modes are purely
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Fig. 1. Shielded dielectric image guide. (a) Transition from rectangular

waveguide to shielded dielectric image guide. (b) Cross section.

bound to the image guide. Since mode conversion effects

[20], [12] occur largely for the range where the modes are
not yet purely bound, investigations for normalized propa-

gation constants less than one, as well as for modes below

cutoff, may be very informative.

This paper presents a rigorous hybrid-mode six-field-

component analysis of the three-dimensional step discon-

tinuity of Fig. 1. The theory based on expansion of the

fields in suitable orthogonal eigenmodes includes the higher

order hybrid-mode coupling effects directly. Field match-

ing at the step investigated and normalization to the power

carried leads immediately to the interesting scattering coef-

ficients involved. The investigation of the related eigen-

value problem includes backward waves [16] and complex

waves [21]–[25]. Since complex wave effects may also be

explained as leakage due to mode conversion between

constituent waves [20], [12], a profound discussion of the
hybrid-mode dispersion behavior, which will include

frequency ranges below the cutoff frequency and curves as

a function of the permittivity, may help to give further

insight to such phenomena. Measurements of the reflection
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coefficient at the step discontinuity of Fig. 1 verify the

theory for the three-dimensional problem.

II. THEORY

For each subregion .s= 1,2,3,4,5 (Fig. 1), the complete

hybrid-mode field is derived from the Hertzian vectors ~

and ~, respectively, [26]

~(s)=v xv x$(s) –j~pv X(j(s)

E(s)= jwfv X F(s)+vX v X Q(s). (1)

In (l), TE–TM mode coupling is inherently included. ~

and ~ are assumed to be sums of suitable eigenmodes

satisfying the vector Helmholtz equation and the corre-

sponding boundary conditions

*= I

Dsi

For simplicity, in (2), the fields are written at z = O only;

the z-dependence in forward and backward direction is

understood. h f) and ~ f) are the still-unknown complex

amplitude coefficients of the V th mode. The type of modes

used for expansion purposes is stated at the end of this

section. The expressions for the eigenmodes @fJ and @f)

and the relations of the propagation constants in the

z-direction yj$) are given in the Appendix. Note that for

the calculations, the vectors ~ and ~ in (1) are assumed to

be y-directed in the subregions s = 1,...,4, and z-directed

in the subregion s = 5 (cf. the corresponding unit vector

.?(S) in (A1)–(A5) in the Appendix).

The cross-section eigenvalue problem is treated as in

[17], with the exception that an electric wall is considered

at x = a (Fig. 1(b)) instead of the one-sided lateral open

structure in [17]. Field matching at the boundaries in the

x, y-direction leads to the set of equations for the field

amplitudes in (A1)–(A4), which may be written in matrix

form

(M)-(v)==o (3)

with

(M)=

and

(v)=

E~. kO. sin(~fi). (– w– a))

F~. kO.cos(@~).(- w - a))

Ay,kO.k~.sin(~~).w)

A;. kO. k~. cos(@;).w )

BP.ko. k;B. 4%)”4

~i”ko”k;B”sin(B4;)”w)

G,ko(&)(@:)(w-b))

Hkko{~~)(B$j)(w-b))

The matrix elements of (M) are given in the Appendix.

The propagation constant y= is calculated by numerical

solution of the matrix eigenvalue problem det (M)= O;

complex solutions and imaginary values Iy=1< tiG are

included. The complex solutions of y: of det ( M) = O are

advantageously searched with the evolution strategy method

[30]. The start value for this direct search process is y==

J&/kO = -i~,, the search range iS .iB,/kO = -i&,”””, .iO for
the imaginary values, and a= /k. = O,. ..,7 for the real

values. The relative field amplitudes of the modes are given

by the eigenvectors of (3).

By matching the tangential field components at the

corresponding interfaces at the step discontinuity at z = O

(Fig. l(a)), the related coefficients k~, ky of the incident

and reflected waves in (2) can be determined by using the

orthogonality property of the corresponding eigenmodes.

After suitable normalization to the related power leads to

the scattering matrix of the step discontinuity at z = O (Fig.

l(a))

where (S) is given by

[

NH o

(s) = ~.

o N*

(4)

[

NH o -1

.(w) N, (5)

o N*

with the normalization coefficients N and the matrix (W)

of the wave-amplitude coefficients elucidated in the Ap-

pendix.
The convergence behavior of the cross-section eigenvalue

problem may be illustrated by plotting the relative field

amplitudes against the x, y coordinates. Fig. 2(a) shows as

i- HZA4E~~ + HZMF~~
– EZME~~ + EZMF~~

o -t HYMF~~

i- EYME~~ o
0 0
0 0
0 0
0 0

– HZMRC~v
– EZMPS~V

o
i- EYMTS~V
– HZMRC~v
+ EZMPS~v

o
– EYMTS~v

– HZMRS~V
+ EZMPC~V

o
– EYMTC~v
+ HZMRS~V
+ EZMPC~V

o
– EYMTC~V

– HZMSCS~P + HZMSSS~P o 0
+ EZMQSS~W i- EZMQCS~P o 0
– HYMQCS~P + HYMQSS~P o 0

0 0 0 0
– HZMSCS~P – HZMSSS~p + HZMG~~ + HZMH~~
– EZMQSS~V i- EZMQCS~P – EZMG~~ + EZMH~~
– HYMQCS~P – HYUQSS~P o + HYMH~~

o 0 + EYMG~~ o
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Fig. 2. Illustration of the convergence behavior. (a) Relative field
strength EY/EY~= of the EHII mode along the cross section at

y=O.1 d(cf. Fig. l(b)); er=4, h=3.25 mm, w=3.505 mm, d=7.9
mm, b= 7.9 mm, a=–b. Number of modes considered Ny =7, cf.

(Al)-(A4). (b) Amplitude oftiescattering coefficient Sll indecibelsas
a function of the number ‘1 of modes considered, cf. (2); c, =6,
~= 17.5 GHz. Dimensions: cf. Fig. 2(a). Mode types considered: 1,4,6,

8, 12, 14, arrd 15 (order ofincreasing phme-constmt vduesatafked

frequency) .(c) Amphtude of thescattering coefficient Sll indecibelsas

afunction of thenumber ~ofmodes considered; cr=9, ~=16.5GHz,
h = 3.2 mm, w = 3.45 mm, d = 7.9 mm, a = – b. Mode types consid-

ered: cf. Fig. 2(b).

an example the y-component of the electric field of the

fundamental mode versus x. Also, by further investiga-

tions, we found that with only 11 consecutive modes con-

sidered in (2) (cf. Appendix, (A1)–(A4)), no severe discon-

tinuities in the tangential field component along the cross

section occur. For the three-dimensional scattering prob-

lem, it has turned out to be numerically advantageous to

take only those modes in (2) which are excited at the

structure under consideration into account. For this pur-

pose, the program checks up the mode-coupling integrals

with regard to the exciting Hlo mode. Zero coUPling means

that the corresponding mode is not excited; this mode is

then onititted from the matching process, In Fig. 2(b) and

(c), the convergence behavior of the fundamental HIO

waveguide mode scattering coefficient S1l against the num-

ber Y of consecutive excited dielectric image-guide modes

considered in (2) is shown’ if an Hlo w?ve’ is incident.

Already, for ‘1= 7 modes, good convergence maybe stated.

The dielectric image-guide modes’ considered for this case

are the lst, 4th, 6th, 8th, 12th, 14th, and 15th modes (order

of increasing phase-constant values at a fixed frequency);

the related waveguide modes considered are H1O, Hll, ~W

H02, Hgo, En, and E31.

III. RESULTS

Fig. 3 s~ows dispersion curves calculated with this

method in comparison with results of [16], [17], and [27]. In

order to emphasize the hybrid character of the dielectric
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Fig. 3. Calculated dispersion curves in comparison tith available results

of [16], [17], and [26]. (a) Phase constant /3= of the EHII mode versus

frequency of a shielded dielectric image guide, with h = 4.0 mm,
d = 6.0 mm, b = 5.08 mm, a = – b (+ measured results of [16]). (b)

Phase constant ~z of the first three modes normalized to k. = ti@
(free-space wavenumber) versus normalized frequency ~ =

(4h~)/A0 [17 of a “quasi-open” dielectric image gtide with

h = 4.1 mm, w = 0.991r, approximated by b =1OW, a = –1OW, d = 4.8h
(+ calculated results of [17] and [26] for the lateral open structure). (c)

Normalized phase constant /3=/kO of the first three even modes versus
normalized frequency B of a coupled ‘f quasi-open” dielectric image
guide with h = 4.1 mm, w = 1.39h, b = 1.51w approximated by a =

7.55 W, ad d = 4.8h (electric wafl d x= b,Fig.l(a))(+c~ctrlated
results of [26] of the lateral open structure).

image-guide modes for normalized phase constants /3=/kO
>1 (kO = uG), the designation of [17] is preferred and

used throughout the paper: EH~., if the fields associated

with the E mode ( EY, EZ, and HZ) are dominant over EX,
HY, and Hz; for HEW., the reverse is true. The indices mn

denote the number of maxima of the EY-components in the

dielectric region (3) (cf. Fig. l(b)) in the x- and y-direction,

respectively. The results calculated with seven consecutive

modes in (2) of the shielded (Fig. 3(a)) as well as of the

“quasi-open” single image guide (Fig. 3(b), approximated
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the corresponding real a= values are plotted in the same

diagram, like e.g., in [29], but, for lucidity, in the opposite

direction. For low permittivity (c, = 2.53, Fig. 4(a)), stan-

dard dispersion behavior can be stated and the unique

fundamental EH1l-mode propagation extends nearly the

whole Ku-band frequency range. Already, for moderately

high permittivity (c, = 6, Fig. 4(b)), however, between 13.9

and 16.3 GHz, the eigenvalue solution of Section II leads

to a complex propagation constant yCWZ= + aCW* jPcW, in

spite of the assumption that the shielded dielectric image

guide is lossless. This apparent contradiction may be re-

solved by interpretation of calculated lines of real power

flow [25], [24], supported by a “complex” mode [21] or

wave [22], which indicate power transmission with opposite

signs: in the forward direction inside the dielectric region,

jl in the backward direction outside, or vice versa. The affin-

ity to the leakage effects stated by [20] and [12] is obvious.

o-
The total power transmitted by a complex wave through

the total cross section of the shielded dielectric image guide

(b)

(}.#=
Fig. 4. Propagation constant y= = ~ normalized with the free-space

7\ -/
wavenumber /c. = u= versus frequency of dielectric image line

shielded with a conventional rectangular Ku-band waveguide housing:

7.899 mm x 15.799 mm. (a) Low permittivity C.= 2.53; h = 3.15 mm,
w = 3.5o5 mm, d = 7.9 mm, a = – b = – 7.899 mm. (b) Moderately

high permittivity c,= 6, h = 3.25 mm, m = 3.505 mm, d = 7.9 mm,
a = – b = – 7.899 mm. ---- complex waves, propagating with exp (yCWZ

“z)) where Y~WZ= i aCWA j~CW.

by b = 10w, a = – 10w, d = 4.8h [27]) and coupled image

guide (Fig. 3(c), approximated by a = – 7.55 w, d = 4.8h

[27], electric wall at x = b = 1.51w) agree well with the

related values of [16], [17], and [27], respectively. Slight

deviations in Fig. 3(b) and (c) may be stated near to the

cutoff frequency of the fundamental EHII mode of the two

“quasi-open” structures (Fig. 3(b) and (c)) because of the

influence of the shield, whereas the real lateral open struc-

ture exhibits no low-frequency cutoff. Thus, the compari-
son with a truly open structure is possi only indirectly.

Since the hybrid-mode theory results 17] are already

compared in detail with results of othe .mmon theories,

this comparison is omitted in Fig. 3.

Fig. 4(a) shows the normalized propagation constant

Y,/ko = JDZ/k. (or az/ko, below cutoff) of a dielectric
image guide (e, = 2.53), shielded’ with a conventional

rectangular Ku-band waveguide housing.1 Included is. the

nonpropagating mode range y=/k. = aZ/k. below the cor-

responding cutoff frequencies fCz, \C3 of the next higher

order modes, HEZ1 and HE31, respectively. For simplicity,

115.799 mm X 7.899 mm (12.4–18 GHz).

is zero, although a real power flow exists. Moreover, for

complex waves, the orthogonality relation still holds [25].

In Fig. 4(b), below the cutoff frequency, the higher order

EH~l mode degenerates to a pair of complex waves propa-

gating in the ~ z-direction with j~CW, and the attenuation

constant is aCW. For still lower frequencies, the complex

waves split into two evanescent modes. The corresponding

rectangular waveguide mode propagation constants calcu-

lated for the ordinate (in Fig. 4(b) at 12 GHz) may suggest

a certain affinity to the pure waveguide Hzo and Ezl

modes. The actual mode conversion, however, is more

complicated.

Fig. 5, where the normalized propagation constant

I’. /~o = { .i& /ko; az/ko } is plotted against the permittiv-
ity c,, allows the modes to be assigned directly to rectangu-

lar waveguide modes (6,=1) at finite frequencies (~= 5

GHz, Fig. 5(a); ~ =14 GHz, Fig. 5(b)); nevertheless, the

plots against c, may be considered as (slightly distorted)

dispersion curves, since increasing permittivity corresponds

to a nonlinear frequency scale. Moreover, all typical results

are verified by a real frequency scale (cf., e.g., Fig. 7).

The results of Fig. 5(a) maybe summarized as follows. 1)

Three complex waves cover nearly the whole indicated

permittivity range. 2) The fundamental EH1l mode already

degenerates to a pair of complex waves (complex wave 2).

3) Evanescent modes may convert to complex waves, which

may lead to propagating modes (complex wave 2). 4)
Evanescent modes may convert to complex waves, which

may lead to backward waves ,(complex wave 2). 5) Evanes-

cent modes may convert to complex waves, which may lead

to evanescent modes (complex wave 3). 6) Waveguide

modes may convert directly to complex waves (complex

wave 1). 7) There are backward evanescent modes (between

the complex waves 1 and 2). 8) There are new types of

evanescent modes designated as HE20 _ 01 and HE20 ~ 01

modes; the HJ%o. 01 mode yields a field concentration

within the dielectric region (cf. Fig. 6(a)) and leads directly

to the propagating HE21 mode—the contrary is true for

the HE20~ 01 mode (cf. Fig. 6(b)), which remains an
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Fig. 5. Propagation constant y,= ~ normalized with the free-space
z.,

wavenumberko= u@ plotted against permittivitycr of a dielectric

image line shielded with a conventiord Ku-band waveguide housing:

7.899 mm X15.799 mm. (a) Frequency ~= 5 GHz (a= – b = –7.899
mm, w= 3.45 mm, h=3.2 mm, d=7.9 mm). ---- complex wave. (b)

Frequency ~=14 GHz (same dimensions as Fig. 5(a)). ---- complex

wave, (1) complex wave 1, (2) complex wave 2, (3) complex wave 3, (4)

backward wave.

(a)

(b)

Fig. 6. Field of evanescent modes at c,=5, ~=5 GHz, indicated in
Fig. 5(a).(a) H20_Ol mode leading tothe HE21 propagating mode.(b)

H20+OI remaining evanescent mode (EZ, Hz not shown).
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(}jbzFig. 7. Propagation constant y= = ~ normalized with the free-space
,. .

wavenumber k. = WG versus frequency; dielectric image line
shielded with a conventional Ku-band waveguide housing: 7.899 mm X
15.799 mm. (a) c,= 9; h = 3.2 mm, w = 3.45 mm, d = 7.899 mm,

b = 7.899 mm, a = – b. ---- complex wave, bw: backward wave. (b)
c, = 15, dimensions: cf. Fig. 7(a). ---- complex wave, bw: backward
wave. (c) c, = 20. (d) c, = 37.
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evanescent mode. 9) The HIO waveguide mode enlarged by o

a E=-component ( HEIO mode) splits in complex waves
I

R-

d

(complex wave 2, which converts to the fundamental EH1l
-h

1%1 ‘5
mode) and in a backward evanescent mode. 10) The funda-

a-w w

mental EH1l mode (which may be considered to be con-

stituted by the fundamental HIO waveguide mode via the
+

complex wave 2) is combined with the higher order HE31
-15-

mode (showing even symmetry like the EH1l mode) via a
++ *

+ trz25T “
backward wave; this may visualize the close affinity be-

-m
13 14 15 16 17 18

tween these modes. Additionally, it should be noted that f/GHz—

complex waves exist in the evanescent mode range of the (a)

corresponding propagating waves; the cutoff frequencies of

propagating higher order modes are no reliable criterion

I

o-

for the absence of leakage affects [12], which may be

caused by complex waves, especially since the fundamental

L

-5-______ .. .. .. .. .._._:

EH1l mode may already degenerate to complex waves
%1 cr=9.o

below its cutoff frequency. -m. h,

In Fig. 5(b), where the fundamental EH1l mode is above
++ +++

:-> “

d
its cutoff frequency, analogous results to Fig. 5(a) may be -15 -h Cr=l.o+
perceived. The complex wave 3) and the backward wave 4) a-w, wb
may be considered as original parts of the higher order -20

1314’ 1516 17 18
mode pair HEdl and EHZ1. Fig. 6(a) and (b) ‘shows the

evanescent HZO– 01 and H20 +01 mode fields (at ~r = 5, Fig.
5(a)) already mentioned above (statement 8)).

Fig. 7 exhibits the dispersion curves-propagation con-

stant y= normalized with the free-space wavenumber Ico =

u= as a function of frequency— for the dielectric

image line shielded with a Ku-band waveguide housing for

several permittivity values (c, as a parameter). The analogy

to the corresponding curves (Fig. 5) as a function of

permittivity at fixed frequencies is obvious and the related

statements still hold. Fig. 7(a), for instance, indicates again
that complex waves may occur below the cutoff frequency

of the corresponding propagating modes to which they are

constituent parts.

Fig. 8 shows the magnitude of the scattering coefficients

Sll at the step-discontinuity rectangular waveguide to the

shielded dielectric image guide (Fig. l(a)) if a Hlo (TEIO)

wave is incident. The magnitude of Sll, which is relatively

easy to measure—opposite to the phase angle, especially

for all cases of simultaneous higher order mode propa-

gation—has turned out to be an adequate criterion to

verify the theory. The hybrid-mode analysis results (solid

line) are compared with measurements and with results of

transmission-line theory (cf., e.g., [14]) applied to this

structure. Only for fr = 2.53 (Fig. 8(a)) does the transmiss-
ion-line theory lead to satisfactory agreement with the

hybrid-mode analysis. This may be illustrated by Fig. 4(a),

where for nearly the whole Ku-band (12.4–18 GHz) only

the fundamental EH1l mode propagates. For higher per-

mittivity, c, = 6 (Fig. 8(a)), c,= 9 (Fig. 8(b)), and c,= 20

(Fig. 8(c)); however, these examples indicate that the hy-
brid-mode analysis results (calculated by only seven con-

secutive modes selected by the criterion of excitation by the

incident Hlo mode; cf. Fig. 2(b) and (c)) agree well with

measurements, whereas the transmission-line theory leads

to wrong results.

flGHz—

(b)

t
0

EEii!
Cp. zo——.— ,_.

9-5 –

-lo +
+’ld

-15 &tj- -h

-20
a-w wb

13 l+ 15 16 17 18
flGl+z —

(c)

Fig. 8. Magnitude of the scattering coefficient S’ll at the step discon-
tinuity rectangular waveguide to shielded dielectric image guide if a IIlo

(TEIO) wave is incident. — calculated with the hybrid-mode analysis.
----- calculated by transmission-line theory (cf., e.g., [14]). + + + + +
measured. (a) e, = 2.53, h = 3.15 mm, and c, = 6, h = 3.25 mm, w =
3.505 mm, d = 7.899 mm, b = 7.899 mm, a = – b. (For c,= 2.53, the
transmission-line theory results are nearly identicat with those of the
hybrid-mode analysis and are, therefore, omitted.) (b) c,= 9, h = 3.2
mm, w = 3.45 mm, d = 7.899 mm, b = 7.899 mm, a = – b. (c) c, = 20,
h = 3.2 mm, w = 3.45 mm, d= 7.899 mm, b = 7.899 mm, a = – b.

IV. CONCLUSION

A rigorous hybrid-mode analysis of the transition from

rectangular waveguide to shielded dielectric image guide is

described. Based on expansion of the fields in suitable

orthogonal eigenmodes, the theory takes into account higher

order hybrid-mode coupling effects directly, also below the

corresponding cutoff frequency. The investigation of the

related eigenvalue problem, in addition to backward waves,

includes frequency ranges where the propagation constant

is complex in spite of the assumption that the guide be

lossless. These complex waves exhibit power transmission

with opposite signs: in the forward direction inside the

dielectric region, in the backward direction outside, or vice
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versa. The affinity to leakage effects, stated recently, is

obvious. Calculated diagrams of the propagation constant

as a function of frequency, as well as of the permittivity,

indicate that complex waves occur nearly over the whole

investigated range. Some important results may be sum-

marized as follows: the fundamental mode already degen-

erates to a pair of complex waves; evanescent modes may

convert to complex waves, which may lead to propagating

modes, backward waves, or again to evanescent modes;

waveguide modes may convert directly to complex waves;

there are backward evanescent modes and evanescent

modes which may be considered to be sums or differences

of degenerated waveguide modes; complex waves exist in

the evanescent mode range of the corresponding propagat-

ing waves; therefore, the cutoff frequencies are no reliable

criterion for the absence of leakage effects caused by

complex waves, especially since the fundamental mode

may already degenerate to complex waves. For the three-

dimensional scattering problem of the transition waveguide

to shielded image guide, the magnitude of the input reflec-

tion coefficient calculated with only seven consecutive ex-

ited modes agrees well with measurements, whereas the

transmission-line theory applied to this structure leads to

wrong results.

APPENDIX

A. Eigenmode Expressions for (2)

(q?(x, y) =Cos ~bm_wa)(x-a) )cos~y

.i75)=Z=,’1=m, n. (A5)

(By this choice, a unique assignment to the waveguide E

and H modes is possible.)

B. Relations for the Propagation Constants

@J. ?!X
d’

V = 0,1,2,...

1$) . E
d’

1. L=1,2,3, . (A6)

B$)sin(p$)h) Cos(p$)(h- d))- C$3~$)COS(B$)h)

.sin(~$)(h-d))=O (A8)

~J$:) ( -(3))cos(~$)(h -d))sin(~$)h) -~”cos PYW

-sin (]’)(h - d))= 0. (A9)

C. Matrix Elements of (3)

d
HZME~ = Uco” ~ “N~.

13$)cos(/3$)0(- w - a))

kO. sin(/3$). (– w – a))

HZMF . & – jyz
k 2“k0

HZMRCkV = Ueo.
p;;). Rkv.cos(p;;’” (-w))

k0.k~~.sin(/3~~). (+ w))

S=3:
Bg).Rk””sin(B:j) ”(tw))

+ HZMRS~V = uto”
ko. k~”cos(~.$). (+w))@$) (x, y) = S (C. sin j3j~)x + C; cos lljl)x ) cos P$)y

“=1

My – jyz” ‘kp

- (2) + D‘ sin 8$)X) Sk p$)Y HZMSCSkv =
kO. k:B@$)(x, y) = z (DPCOS&P ~

#=1

(A1O)
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~z~E . ~ – jyz D. Normalization Coefficients of (5)
k 2“ko

d ijj)”sin(ll$).(–w – a))
EZMFk = UpO. – .

2 ko.cos(~$). (–w–a))

& EZMPSkV = & – h’z”pkv

kO. k;A

EZMPCkV = – j~z”pkv

ko. k;A

B$)”Qk.”sin (I&. (i w))
i EZMQSSKP = UpO.

kO. k;B.cos(@(+w))

p:)”Qk,”co@:)-(- w))
EZMQCSkP = (+o.

ko.k~~.sin(l$). (+ w))

(All)

N + ~ (5)
Hmn = — mn

+ &pop&@;a) d[(&)2N.+(&)Nm]

Nk = Neumann-factor,
(

N=2 fork=O

N=l fork#O )

N
(b-a)

, d[(~)2+(y)2].

(A16)

For the dielectric waveguide, the power is calculated

numerically

‘=[==abf=:d(~X*)~Z~Y~X. (A17)

The normalization coefficient is then given by

Nq=~hq@. (A18)

The following abbreviations have been used:[B‘2)2–Y;] “ f2kyHy&ff2cskp = ‘Pk k DB

o“ p

[B(2)’– y;] .Qkp
t HYMQSSkP = f ‘P

ko. k;B

EYMEk = ; .Nk. [ ~J:)2 – t]
&

kEYMTSkV = ~
[1%?’– 7,2] “Tku

~o.k$A

[@2)’ 12.TkV
EYMTCkV = ‘“ – ‘z

/30.k;A

EYMGk = ; .Nk. [fl$)’ – f]

Po

~Y&fH = @ [~~:)’– Y;]k 2“ PO

EZMG . ~ – jy,.—
Bo

~kPj::{~)(Pjf)( w-’))

EZMHk = Upo. ~ .
+P$)~:p(P$’(Y-d))sin(~Y) @

‘O-{~;}(P$?(w-’))

~$).(;~)(~~~)(w-b))

Tkp=kf”~~~(fi;)Y)cos(~Y)~Y

HZMGk = (.oco. ; .Nk.

ko{::)(fl?(w-’))
+J:p(B:’(Y-d))cos( ~Y) d,.

HZMH = &r – jy,
k 2“ko”

(A15) E. Matrix (W) of the Waveamplitude Coe#icients in (s)

[

(- HYL~~) (- HYP~~) (+ HYH..y)

1[

-I (-HYLJ (+ HYT..)
(- HYH..,)

(- HXL..) (- HXpm.) (+ HXE + HXH)mny (- HXL.n) (+ HXPm.) (+ H-YE - HXH)m.Y

‘W)= (- EYLJ (+ EYP~n) (+ EYE~mY) “ (+ EYL..) (+ EYPm.)

1

(- EYE~~~) “
(- EXL..) (+ EXP..) (+ EXE - EXH)m.v (+ EXL..) (+ EXP~~) (- EXE - EXH)m.Y

(A19)

(A14)
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CINZ109V~ = J:,cos(Pflu(Y-d) )cos(;Y)”dY

CINZll~.n =J-WSWW*”WD~=~

sin(fi(x-~))dx

/

+W

cINz12qvm = sin(MPx)sin(fi(x-a))dx
.~=—~

cINz13qpm =
J

‘w cos(~~~px)sin(~ (x-a))dx
~=—~

cINz14*pn = f=ocos(B8pY)cos(; Y]”dy

CINZ15~p. =/’ cOs(~$k(Y-d))cos(~ Y)-dY
y=h

cINz16*mn =/-wWWx-aD~=~

sin(~(x-~))dx

J
CINZ17+VM= ‘“

( )
sin(Bl&x)sin &(x-a).dx

x=—w

J

+W

CINZ18*V. = cos(P%x)sin(*(x-a) )dx
~=—~

cINz19*vn = {~= OCOS(PHpY)COS(~ Y)dY. (*28)

cINz40qvn =/’ sin(B&u”(Y-~))”sin(;Y)”JY“zh

/

+W

CINZ47PV. =
( )cos(@2px)cos ~(x-a) .dx

,.=—~

J

+W
CINZ48qvm = sin(ll?ux)cos(~ (x-a ))”dx

.x=—w
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